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Abstract—Social media advertising is a multi-billion dollar
market and has become the major revenue source for Facebook
and Twitter. To deliver ads to potentially interested users, these
social network platforms learn a prediction model for each user
based on their personal interests. However, as user interests often
evolve slowly, the user may end up receiving repetitive ads. In
this paper, we propose a context-aware advertising framework
that takes into account the relatively static personal interests as
well as the dynamic news feed from friends to drive growth in the
ad click-through rate. To meet the real-time requirement, we first
propose an online retrieval strategy that finds k most relevant ads
matching the dynamic context when a read operation is triggered.
To avoid frequent retrieval when the context varies little, we
propose a safe region method to quickly determine whether the
top-k ads of a user are changed. Finally, we propose a hybrid
model to combine the merits of both methods by analyzing the
dynamism of news feed to determine an appropriate retrieval
strategy. Extensive experiments conducted on multiple real social
networks and ad datasets verified the efficiency and robustness
of our hybrid model.

I. INTRODUCTION

Social media ad spending has been rising dramatically in
recent years and is expected to reach 24 billion in 2015 1. As
the dominator in the market, Facebook made an ad revenue
of 12.47 billion dollars in 2014, an increase of 58% year-
over-year2. With the pay-per-click advertising methodology to
assess the cost effectiveness, existing social network platforms
place great emphasis on delivering matching ads to potentially
interested users. They learn a prediction model for each user
based on the personal interests and historical activities. When a
user logins his/her account, the most relevant ads matching the
learned model are embedded in the news feed and presented
to the user. However, the model only captures the slowly
evolving personal interests of a user, resulting in repetitious
ad recommendation. In addition, recent research has shown
that, people find targeted advertising to be intrusive since the
ads are too relevant to their specific areas of interest [1].

To mitigate the issue, we propose a context-aware ad rec-
ommendation framework that takes into account the relatively
static personal interests as well as the dynamic news feed
from friends to drive growth in the ad click-through rate.
We treat the news feed as a dynamic context that provides
additional clue in the spatial, temporal and social dimensions
for ad recommendation. For example, when a friend posts in
Facebook the dining photos in a restaurant, relevant promotion

1http://blogs.wsj.com/cmo/2015/04/15/social-media-ad-spending-24-billion/
2http://investor.fb.com/releasedetail.cfm?ReleaseID=893395

coupons can be recommended. When a friend shows the status
in hospital, displaying gift delivery ads is a good choice. Such
motivation was also supported by a very recent work from
Twitter [2] in which the contents in the tweet stream were
taken into account to enhance the click-through prediction rate
of advertising.

However, it is a rather challenging task to support social
ad recommendation in a highly dynamic context. First, the
posting rate and login frequency in Facebook and Twitter are
very high. A new post will appear in all the friends’ news
feed and may cause their top-k relevant ads to be changed.
Second, the ad repository is huge, e.g., Facebook has over 1
million advertisers3, making the top-k query processing rather
expensive when the read frequency is very high. To meet
the real-time requirement, we first propose an online retrieval
strategy that adopts existing top-k aggregation algorithms [3],
[4] to find the most relevant ads matching the dynamic context
when a read operation is triggered. However, when the context
varies little, the online retrieval may retrieve the same set of
top-k ads repetitively, which is a waste of CPU resources.
Thus, we further propose a safe region method to quickly
determine whether the top-k ads of a user are changed. We
guarantee that as long as the dynamic context is located within
the safe region, the top-k results remain the same and the
cost of repetitive retrieval is saved. Finally, we observed that
when the dynamic context vary dramatically, online retrieval
is preferred because the safe region can only guarantee the
safeness for a short period of time and requires frequent re-
construction. Otherwise, safe region technique is a suitable
choice. To combine the merits of both retrieval strategies,
we propose a hybrid model that analyzes the dynamism of
news feed for each user to determine which strategy should be
applied.

To sum up, the contributions of this paper include:

1) We propose a new context-aware ad recommendation
framework on social networks by considering both
long-term user interests and highly dynamic contents
in the news feed.

2) We present an online retrieval strategy that obtains k
most relevant ads when a read operation is triggered.

3) We devise a safe region technique to avoid repetitive
retrieval when the context varies little.

4) We propose a hybrid model to seamlessly combine
the merits of the two retrieval strategies.

3http://www.forbes.com/sites/roberthof/2013/06/18/you-know-whats-cool-
1-million-advertisers-on-facebook/



5) We conduct extensive experiments on real social net-
works with billions of edges and real ad datasets with
millions of tuples. The experimental results show that
our hybrid method significantly outperforms the other
two retrieval strategies up to 30x speedups.

We first review related works in Section II. The prelimi-
naries of the context-aware ad recommendation are presented
in Section III and we devise the online retrieval algorithm in
Section IV. The safe region method is introduced in Section
V. Subsequently, we propose the hybrid method in Section VI.
The experimental results are reported in Section VII. Finally
we conclude the paper in Section VIII.

II. RELATED WORK

Pub/Sub System. Pub/sub system has been extensively studied
in the past [5], [6], [7], [8], [9], with deployment in a variety
of applications including stock market [5], E-commerce [8],
location-based services [9], [7], [10], [11] and online adver-
tisement [6]. However there are two main differences between
these works and the context-aware ad recommendation. First,
pub/sub systems typically focus on boolean expression match-
ing which means there can be a potentially large number of
matching events to a user’s subscription, or in our case, the
matching ads. This is not suitable for social marketing since
users would be annoyed by too many ads. In the context-
aware ad recommendation, we model it as a ranking problem
where only the top-k relevant ads will be posted on news
feeds. Second, these works assume subscriptions are static and
the indices are built based on such assumptions to efficiently
retrieve matching events. However, in our case the most
relevant ads should not only match the static user interests but
also the contents in the users’ news feed. As news feeds change
constantly for real world social network, existing solutions
cannot be applied. Thus it calls for an efficient solution which
caters to the dynamism of users’ news feeds to retrieve the
most relevant ads.

Top-K Aggregation Query. The other branch of existing work
related to our problem is the top-k aggregation query [12], [3].
Consider a database D where each object o = (x1, x2, . . . , xn)
has n scores, one for each of its n attributes. Given a mono-
tonic aggregation function f , where f(o) or f(x1, x2, . . . , xn)
denote the overall score of object o, the top-k aggregation
problem is to find a set of top-k objects in D with the
highest overall scores. Many approaches such as Threshold
Algorithm (TA), CA and their variants [3], [4], [13], [14] have
been proposed. Since we consider in-memory recommendation
without disk I/O, we adopt TA algorithm for top-k ad retrieval
as it has been shown to be instance-optimal [3].

Local immutable region (LIR) [15] and gloabl immutable
region (GIR) [16] are another two relevant works to our
context-aware advertisement recommendation problem. For a
given query vector with the respective top-k entities, LIR
searches for a valid interval for a given dimension in the
query vector such that the top-k entities remain the same,
while all other dimension weights are kept constant. However,
in our problem, the weights for different dimensions change
simultaneously which LIR is unable to handle because of the
local nature of LIRs. GIR is able to support simultaneous
adjustments to multiple dimensions. Unfortunately, GIR is

computationally expensive as it takes minutes or even hours
to get the valid region for a given query vector with only 5-8
dimensions. This makes GIR infeasible to handle the dynamic
nature of social news feeds. To overcome this issue, we design
a series of techniques to quickly compute a subspace of GIR
so that the maintenance cost is greatly reduced.

Microblog Search in Social Networks. There has been much
effort made to address the problem of microblog search in
social networks [17], [18], [19]. Chen et al. introduced a
partial index named TI to enable instant keyword search
for twitter [17]. Tao et al. proposed an index to search for
the microblogs which are ranked by their provenance in the
network [18]. Li et al. devised a 3D inverted index to enable
efficient microblog search by considering content similarity,
time freshness and social relevance [19]. However these indices
are designed to search the microblogs whereas in our case
the microblogs are used as queries to retrieve relevant ads.
This means existing work cannot be applied to our context-
aware ad recommendation problem since the dynamism of
the query is not considered. Therefore our solution takes
into consideration both the property of social graph and the
dynamism of microblogs in the news feeds to deliver high-
speed ad recommendation.

III. PRELIMINARIES

We study the problem of context-aware ad recommendation
for users in a directed social graph G = (V,E). To capture
both static and dynamic contexts of users, we model each user
profile as a set of weighted topics that capture slowly evolving
personal preference; as well as a pool of unread messages
that update dynamically and rapidly. We treat the user profile
construction as a black-box and any topic extraction or mining
techniques [20], [21], [22], [23] can be adopted to transform
the historical posts, sharing and other activities into a latent
topic space T and the output is a weighted vector Hu with
|T | dimensions. Such topical distribution can be assumed to
remain stable in a period of time [2].

Given an ad database A, our goal is to recommend k most
relevant ads when a user requests for his news feed. Since
the ads can also be projected into a |T | dimensional topical
vector, we follow previous works [21], [22], [23] to measure
the relevance between an ad and the static user profile as

ϕs(u, a) =
∑
w∈T

rel(u,w) · rel(a,w) (1)

where rel(u,w) ∈ [0, 1] denotes the relevance between a user
u and a topic in T .

Our context-aware ad recommendation also needs to take
into account the dynamic news feed when measuring the
relevance score between a user and an ad. We use a sliding
window Wu to store m most recent posts disseminated to user
u to serve as the dynamic context for ad recommendation. We
apply the same topic modeling technique to project each post in
the window to the latent topic space and use rel(d,w) ∈ [0, 1]
to measure the relevance between a post and a topic. These
scores are aggregated and normalized as follows to measure
the contextual relevance w.r.t an ad.

ϕd(u, a) =
1

m

∑
d∈Wu

∑
w∈T

rel(d,w) · rel(a,w) (2)
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Fig. 1: System Overview of Context-Aware Advertisement Recom-
mendation in Social Networks

Finally, the total relevance of an ad a and a user u is a
linear combination of u’s static interests and dynamic context:

ϕ(u, a) = α · ϕs(u, a) + (1− α) · ϕd(u, a) (3)

α ∈ [0, 1] is a system parameter to balance the importance
between personal interests and dynamic context and can be
set based on the application requirements. In general, when
α is close to 1, the user profile evolves slowly and less
maintenance efforts are required. When α is close to 0, the ad
recommendation relies mainly on the dynamic context, which
makes efficiency a challenging issue. Based on the ranking
function in Eqn. 3, we formally define our problem as follows:

Definition 1. For any user u, the context-aware ad recom-
mendation finds a set of ads, i.e. R, which has a size of k and
satisfies ϕ(u, a) ≥ ϕ(u, a′) ∀a ∈ R ∧ ∀a′ ∈ A \R.

Fig. 1 illustrates the system overview. Each user in the
social network is considered as both a subscriber and a
publisher. When a user composes, shares or likes a post, we
say the user, as a publisher, triggers a write operation. The
new post is first sent for topic analysis, stored in the posts
database and later may be retrieved to appear in the news
feed of his social friends. When a user logins or refresh
his/her news feed, we say the user, as a subscriber, triggers
a read operation. Then, the posts from friends are retrieved
and sorted chronologically and a sliding window containing
m recent unread posts are returned. The topic distributions in
the dynamic news feed are aggregated with the static personal
profile vector as in the ranking function in Eqn. 3 to query the
ad database. We call the aggregated vector context-aware
query vector, denoted by Qu. In the following section, we
show how to handle such top-k query in a large ad database.
All the frequent notations used in this paper are listed in Table I
for ease of reference.

TABLE I: Frequent notations used across the paper
Notation meaning
G,V,E the social network, the vertex set and the edge

set respectively.
T the topic space.
A the set of all ads
u, v users in social networks.
m number of posts that appeared in the current

window of a user’s news feed.
k number of ads posted in a user’s news feed.

rel(u,w) the relevance of a user u, a post d and
rel(d,w) an advertisement a against a given topic w
rel(a,w) respectively.

α the weight parameter between [0, 1] to balance
the the importance between personal interests
and dynamic context.

θ(x, y) the angle between two vectors x and y.
Qu the context aware query vector for user u.

Qlb
u , Q

ub
u upper and lower bound vectors for the safe

region of user u.

IV. ONLINE RETRIEVAL ALGORITHM

Existing social ad recommendation systems learn a model
for personal interests offline. Since the model is relatively
static, the top-k relevant ads for each user can be computed
offline and returned together with the news feed when a read
operation is triggered. However, when the dynamic context is
taken into account in the ranking function, we are unable to
pre-compute the ads for each user because each write operation
will cause the news feed of all the friends to vary and the
incurred pre-computation cost is unaffordable. In this section,
we introduce how to efficiently retrieve the top-k relevant ads
on the fly.

When a user u triggers a read operation, we need to
retrieve the unread posts from the neighbors of u, sort them
in chronological order and obtain a window of m posts as
the dynamic context. Then, a straightforward solution is to
construct the query vector by combining the topic distributions
in the dynamic window and static personal interests and issue
a top-k query against the ad database. Without proper indexes,
it needs to scan all the ads in order to find k of them with the
highest relevance scores, incurring very high computation cost.
To efficiently handle the top-k query processing, we propose
to rewrite the ranking function in Eqn. 3 and apply existing
aggregation methods. In particular, we have

ϕ(u, a) = α · ϕs(u, a) + (1− α) · ϕd(u, a)

=
∑
w∈T

[
α · rel(u,w) + 1− α

m

∑
d∈Wu

rel(d,w)
]

︸ ︷︷ ︸
Qu(w)

·rel(a,w)

where Qu(w) is the aggregated relevance between user u and
topic w and is set to α · rel(u,w) + 1−α

m

∑
d∈Wu

rel(d,w).

Now our ranking function ϕ(u, a) becomes an aggregation
function among the partial relevance in each topic dimension.
It consists of two terms Qu(w) and rel(a,w). rel(a,w) is
independent of the dynamic context and can be computed and
sorted offline. On the other hand, when the query user u is
determined, Qu(w) becomes a constant and will not affect the
order of rel(a,w). Therefore, we can maintain |T | inverted
lists for each user, each sorted by rel(a,w). When a read



operation is triggered, we can retrieve the sorted lists and
directly apply standard top-k aggregation techniques such as
Threshold Algorithm (TA) [3]. It consists of two main steps

1) Perform a sorted access in parallel to each of the |T |
sorted lists. For each document accessed, perform a
random access to other topics and compute the ag-
gregated score of ϕ(u, a). If the computed aggregated
score is one of the k highest we have seen so far,
remember the ad and its score.

2) For each list Li, let high[i] be the score of the last
ad seen under sorted access. Define the threshold
value Bk to be the aggregated score of high[i] by
the aggregation function ϕ(u, a). As soon as at least
k ads have been seen whose score is at least equal to
Bk, the algorithm terminates.

Example 1. Let the window size m = 3, the weighting
parameter α = 0.25 and the number of topics |T | = 2.
Given a user u, let Hu = (0.4, 0.6) be the topic distributions
of his/her static interests. Suppose the topic distributions
of the three posts in the window are (0.2, 0.8), (0.1, 0.9)
and (1.0, 0) respectively. When u triggers a read operation,
the context-aware query vector Qu is calculated as Qu =
0.25 · (0.4, 0.6) + 1−0.25

3 [(0.2, 0.8) + (0.1, 0.9) + (1.0, 0)] =
(0.55, 0.45) = (0.425, 0.575). Suppose Qu is used to query an
ad database with four tuples {a1 = (0.3, 0.9), a2 = (0.4, 0.7),
a3 = (0.5, 0.8) and a4 = (1.0, 0)}. To support top-k aggre-
gation, we pre-compute two inverted lists lw1 and lw2 for the
topics and get lw1 = {(a4, 1.0), (a3, 0.5), (a2, 0.4), (a1, 0.3)}
and lw2 = {(a1, 0.9), (a3, 0.8), (a2, 0.7), (a1, 0.0)}. By calling
the TA algorithm presented above, a3 will be returned as the
most relevant ad if k is set to 1.

V. SAFE REGION ALGORITHM

In a social network, the frequency of the read operations is
normally much higher than the write operations. The famous 1-
9-90 rule of Internet culture states that 90% of the participants
of a community only view contents while the rest will edit(9%)
or create(1%). Hence, for users who frequently login to check
news updates from friends, the online retrieval algorithm in
Section IV is not an appropriate choice. This is because the
context may vary little in such a short period and it is a waste
of CPU resources to repeatedly retrieve the same set of ads.

To tackle the issue, we propose a safe region algorithm
that examines whether the top-k ads have changed since the
previous user read requests. This can be done efficiently by
maintaining a safe region for each user. As long as the new
context-aware query vector triggered by a user read operation
is still located in the safe region, the top-k ads can be directly
presented to the user. Otherwise, we re-compute the new top-k
results and update the safe region.

A. Safe Region Construction

In Eqn. 3, the ranking function aggregates the relevance
of static user profile and dynamic sliding window in the
news feed. The window contains w recent posts and can be
represented in the form of a topic vector. When a new post is
disseminated to a user, the oldest post in the window expires.
The weight of the new window for each topic varies mildly
and the top-k relevant ads may remain the same. Thus, by

Algorithm 1: GSR(User u)
1 R← Use TA to compute the relevant ads against Qu

2 Qlb
u ← Qu, Q

ub
u ← Qu

3 while True do
4 w ← DimensionSelect(v)
5 δ⃗ ← 1−α

m e⃗w
6 for a ∈ R do
7 ϕ(a) = MinS(a,Qlb

u − δ⃗, Qub
u + δ⃗)

8 Su ← min{ϕ(a)|a ∈ R}
9 for a ∈ A \R do

10 ϕ(a) = MaxS(a,Qlb
u − δ⃗, Qub

u + δ⃗)
11 Sl ← max{ϕ(a)|a ∈ A \R}
12 if Su ≥ Sl then
13 Qlb

u ← Qlb
u − δ⃗

14 Qub
u ← Qub

u + δ⃗
15 else
16 return (Qlb

u , Q
ub
u )

constructing a rectangle in the high-dimensional topic space
such that whenever the topic vector of the new window is still
located in the rectangle, the top-k relevant ads for the user
will not change. We call the high-dimensional rectangle a safe
region, denoted by S = (Qlb

u , Q
ub
u ), where Qlb

u stores the lower
bound of coordinates in all the dimensions and Qub

u stores the
upper bound.

In [16], Zhang et al. proposed GIR to compute the maximal
safe region such that the topic vector update within the region
incurs no change for the current top-k results. However, it is
prohibitively expensive to construct the optimal safe region,
especially in the high dimensional topic space. The method
cannot meet the real time requirement in the social streaming
environment. Thus, we propose a Greedy Safe Region (GSR)
algorithm to incrementally build a safe region. As illustrated
in Algorithm 1, we first store the top-k results for the current
news feed window in R and initialize the safe region to be the
context aware query vector Qu (lines 1-2). In the following
iterations, we pick the most promising topic/dimension to
expand the current safe region (line 3). For each dimension,
we first calculate the distance from Qu to the boundaries of
the current safe region (Qlb

u , Q
ub
u ) in that dimension. Then,

we select the dimension with the minimum distance for safe
region expansion.

For the selected dimension w, we examine whether it is
safe to expand upwards and downwards by an expansion unit
δ⃗ = 1−α

m , since 1−α
m is the maximum possible change in

Qu(w) for each new post. For the expanded safe region, if
its minimum relevance to the current top-k ads, denoted by
Sl, is still larger than the maximum relevance to those not in
R, denoted by Su, then the expansion is safe. Otherwise, the
algorithm terminates and returns the safe region expanded in
partial dimensions.

Theorem 1. For a query vector Qu with its bound vectors
Qlb

u and Qub
u returned by Algorithm 1, whenever Qlb

u (w) ≥
x(w) ≥ Qub

u (w)∀w ∈ T , it corresponds to the same set of
top-k ads as Qu.

We omit the proof since it is trivial according to our
explanation about the GSR algorithm.
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Fig. 2: Computing MinS and MaxS when the safe region sphere lies
in the positive quadrant.

B. Computing MinS and MaxS

To obtain the values of Su and Sl, we are required to eval-
uate the minimum and maximum relevance score between an
ad and a safe region, denoted by MinS and MaxS respectively.
We can formulate such a problem as the following:

min /max
∑
w∈T

rel(a,w) · x(w)
∥x∥

s.t. Qlb
u (w) ≤ x(w) ≤ Qub

u (w) ∀w ∈ T

(4)

Note that in Eqn. 4, we divide the objective function by ∥x∥.
A success safe region expansion requires, for any query x ∈
(Qlb

u , Q
ub
u ), x·au ≥ x·al ∀au ∈ R and ∀al ∈ A\R. This means

the norm of x should not be taken into account of the relevance
score between an ad and the safe region. If the normalization is
not applied, MinS would choose Qlb

u and MaxS would choose
Qub

u as solutions of Eqn. 4. Since ∥Qlb
u ∥ < ∥Qub

u ∥, it incurs
an underestimation of MinS and an overestimation of MaxS,
resulting in a much smaller safe region.

Eqn. 4 is essentially an optimization problem of finding
two vectors in the rectangular area defined by the safe region
bound vectors (Qlb

u , Q
ub
u ), which have the minimum and the

maximum cosine similarities respectively against an ad vector
a. In other words, MinS and MaxS correspond to vectors
xmax and xmin in the rectangular safe region which have
the maximum and the minimum angles respectively to a.
However, it is inefficient to find the exact solution due to the
nonlinear term in the objective function. To solve the issue,
we propose to use a sphere that encloses the safe region
constructed so far. Based on the sphere, we calculate MinS
and MaxS to determine a termination of the GSR algorithm
or further expansion of the current safe region.

Let xc be the vector that passes the origin and the center of
the rectangular safe region, i.e. xc =

1
2 (Q

lb
u +Qub

u ). We apply a
minimum sphere to enclose the safe region and replace xmin

and xmax to be the minimum and maximum angles to the
bounding sphere. The new angles from an ad a to xmin and
xmax for the sphere can be computed as:

θ(a, xmin) = max{θ(a, xc)− arcsin(
r

∥xc∥
), 0} (5)

θ(a, xmax) = θ(a, xc) + arcsin(
r

∥xc∥
) (6)

where θ(., .) denotes the angle between two vectors and r is
the radius of the spherical safe region, i.e r = ∥ 12 (Q

ub
u −Qlb

u )∥.

0

Fig. 3: Computing MinS and MaxS when the safe region sphere
overlaps with x-y plane.

Fig. 2 presents illustrative examples of xmin and xmax in a
3-dimensional space. In Fig. 2, the whole spherical safe region
is a ball that lies in the positive quadrant. It is visually intuitive
about the min and max angles between a and the sphere
region. In this case, MinS and MaxS are directly computed via
Eqn 5 and Eqn. 6 respectively. Compared to using rectangle
to derive MinS and MaxS, the computation becomes much
more efficient but the constructed safe region may be slightly
smaller. This is because the sphere encloses the rectangle and
it results in smaller xmin and larger xmax, which consequently
leads to larger MinS and smaller MaxS. In other words, the
value of Sl increases but the value of Su decreases, which
makes the GSR algorithm more likely to terminate.

Fig. 3 illustrates a case worthy of our attention. The sphere
region is now overlapped with x-y plane. In this case, we can
still calculate xmin using Eqn. 5 because the ad a and query
vector Qu, which is the center of the safe region, are positive
vectors and xmin is guaranteed to lie on top of the x-y plane.
To calculate xmax, as the safe region sphere overlaps with x-y
plane, we need to determine if xmax still lies on the surface
of the sphere or the intersected area between the sphere and
x−y plane, which are shown in Fig. 3. The following theorem
shows how to determine the location of xmax for an ad a.

Theorem 2. For an ad vector a, let x∗
max be the vector

obtained by directly applying MinS on the spherical safe
region. Let I be an index set such that I = {i|x∗

max(i) < 0}
and S(i) be the region where the sphere intersects with the
plane x(i) = 0 ∀i ∈ I . If I is an empty set, xmax can be
calculated by Eqn 6. Otherwise,xmax is obtained by:

xmax = argmax
q
{θ(a, q)|q ∈ S(i) ∀i ∈ I}4 (7)

Readers can refer to the Appendix section for the proof.

Theorem 2 tells us that there are two cases when computing
xmax. In the first case, if xmax lies in the positive quadrant,
we compute xmax by Eqn. 6. In the second case, when
xmax goes beyond the positive quadrant, xmax must lie in
the intersected area between the sphere and boundaries of the
positive quadrant. To obtain the exact location of xmax for
the second case, we project the ad a onto the boundaries of
the positive quadrant, where the boundaries contain a piece of

4For any point q, we also use q to represent the vector which passes through
the origin and q as a point when there is no ambiguity, e.g. in θ(a, q), q means
a vector whereas in q ∈ S(i), q means a point.
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Fig. 4: Example of computing xmax when the safe region sphere
overlaps with x-y plane.

the safe region sphere. It can be easily proven that xmax is
exactly the point which has the maximum angle away from a’s
projection. Fig. 4 shows an example of identifying xmax. We
plotted the intersection area S between x-y plane and the safe
region sphere. a′ is the projection of a onto x-y plane and we
identify xmax from S as the point which has the maximum
angle away from a′ as shown in Fig. 4.

C. Safe Region Based Query Processing

Having discussed how the safe region can be constructed,
we are now ready to present how to process incoming queries
triggered by user read operations. We have proved in Theorem
1 that for any query vector x within the safe region formed
by (Qlb

u , Q
ub
u ), the top-k results will be the same for all x. A

naive query processing technique for a query Q is to simply
check if Q ≥ Qlb

u ∧ Q ≤ Qub
u . However such a checking

rule is too strict and cannot handle the case where the safe
region bound vectors and the query vector are not in the same
scale. For example, there are two query vectors Q = (0.3.0.5)
and Q∗ = (0.15, 0.25). Both vectors will have the same top-k
ads since Q = 2 ·Q∗ and the results are invariant under scalar
multiplication of the query vector. Let a safe region be defined
by Qlb

u = (0.1, 0.2), Qub
u = (0.2, 0.4), Q is not bounded by

(Qlb
u , Q

ub
u ). However it is easy to see that Q can indeed be

processed by the safe region since Q and Q∗ share the same
result and Q∗ is bounded by (Qlb

u , Q
ub
u ). If the naive checking

rule is adopted, a large number of re-computations for new safe
regions are needed. Thus, we assign a more flexible checking
rule for query processing with the safe region.

Lemma 1. For any query vector Qu and a safe region formed
by (Qlb

u , Q
ub
u ), if Qu intersects the bounding sphere of the safe

region, then Qu will also be in the safe region.

It is straightforward to prove Lemma 1 according to Theo-
rem 1, therefore we omit the details here. To efficiently check
if a query vector Qu intersects with a sphere, we use Eqn. 5
where the ad vector a is replaced with Qu. Such checking has
a worst time complexity of O(|T |) since we need to compute
the angle between two vectors with at most |T | dimensions.

D. Optimizations

To further improve the performance of the safe region
method, we propose two optimization techniques. The first
seeks to efficiently evaluate Sl and Su in each iteration of
GSR algorithm. The second aims to avoid the online retrieval

0

’

1

Fig. 5: Example of computing if a SSR contains a query vector

.

and safe region re-construction cost when a query vector Qu

no longer exists in its original safe region.

In Algorithm 1, we evaluate Sl by computing MinS for
k times and Su by computing MaxS |A| − k times. This
means evaluating Sl requires almost a scan of all ads, which
is too computationally expensive to evaluate Sl for a large ad
database. This motivates us to develop an efficient algorithm
to compute MaxS only when necessary.

We design a TA-like approach to evaluate Sl. Sl is the score
of the top-1 ad in |A \R|, which has the highest MaxS score
against a safe region. As the ads have been sorted w.r.t each
topic by the ads’ topic relevance scores, i.e rel(a,w), we visit
the ads in descending order of rel(a,w) in topic w’s inverted
list and perform random access to other topics’ inverted lists
for computing MaxS. Meanwhile, we maintain an upper bound
score bw for the inverted list of each topic w and the maximum
MaxS score of unvisited ads can be bounded by computing
MaxS for b = (b1, .., b|T |) against the safe region. If the top-1
ad, which has the highest MaxS score among all visited ads,
has larger MaxS score than that of b, we can terminate and
return Sl. Such optimization will greatly reduce the number
of MaxS computations in Lines 6-8 of Algorithm 1.

When the dynamic query vector Qu deviates out of the safe
region of user u, we need to adopt the online retrieval to obtain
top-k ads on the fly and construct a new safe region in the
meanwhile. Such computations are rather expensive. Thus for
our second optimization, we propose a new idea to “salvage”
the maintained safe regions as well as the associated top-k
ads from other users. This is because all the query vectors in
a safe region share the same top-k ads. When Qu moves out
of the safe region, we can search all the safe regions of other
users. If we can find a safe region from user v that contains
the new query vector Qu of user u, its top-k ads are exactly
the same as user u. Moreover, we can assign the safe region
of v directly to user u. In this way, the cost of online retrieval
and safe region computation can be saved.

To quickly identify whether the new query vector Qu is
contained in the safe regions of other users, we transform
the problem into a standard range query in high dimensional
space. As shown in Fig. 5, B is a safe region centered at xc

with radius r and Q is a query vector. Our original processing
technique is to check if Q intersects with B. By mapping B to
B′ with new center x′

c and scaling Q to Q′ where x′
c and Q′

both lie on the boundary of the unit sphere, we transform the
vector-sphere intersection problem into checking if the distance



from Q′ to x′
c is smaller than r′. This is because the minimum

bounding convex cone is the same for both B and B′. After the
transformation, our goal is to find the MBRs whose distance
to a query point is smaller than the radius. The new problem
can be efficiently solved by high-dimensional indexes such as
k-d-tree [24] or iDistance [25].

VI. HYBRID ALGORITHM

In this section, we propose a hybrid model to combine the
merits of online retrieval and safe region. Our strategy is to
measure the dynamism of topic distributions in the streaming
news feed of each user. If the topic distributions in a news feed
vary dramatically as new posts flood in, we adopt the online
retrieval method to avoid the cost of maintaining safe regions
that update frequently. Otherwise, the topic distributions are
relatively stable and the safe region method is suitable for the
scenario.

A. Variance of Topic Distributions

To measure the variance of topic distributions, we use i.i.d
Poisson process Pu of rate λu to model the generation of new
posts in a user’s news feed as it is frequently used to model the
arrival of events. We assume that the number of topics in each
post d from user u follows the discrete uniform distribution
Fu with range {1, 2, ..., fu}. The topics in d are then sampled
via a multinomial distribution and each topic is selected with
probability pw,u. Let Dw,u denote the total weightage of topic
w in a post d from user u. The whole generative process to
build a post for a user u is summarized as follows:

1) Draw a posting time from Poisson process Pu ∼
Possion(λu)

2) Draw the number of topics for a post Fu ∼
Uniform(1, 2, ..., fu)

3) Draw topics Dw,u|Fu ∼ Multinomial(pw,u)

For Pu, we can estimate the posting rate λu by u’s historical
posting times. For the parameters of Fu and Dw,u, we can
estimate by analyzing all the topic vectors of u’s posts.

Let Xw,v be the random variable describing the weightage
of topic w appears in a user v’s sliding window. Given the
aforementioned generative process, Xw,v can be written as:

Xw,v =
∑

n∈N(v)

∑
1≤i≤Mv,n

Dw,n(Fn) (8)

Where N(v) is all v’ neighbours and Mv,n is a random vari-
able describing how many posts are selected from a neighbour
n to form the news feed window of m posts for user v. Then,
based on Eqn. 8, the variance of a topic w in a user v’s news
feed can be defined as:

Var[Xw,v] = Var[
∑

n∈N(v)

∑
1≤i≤Mv,n

Dw,n(Fn)] (9)

which can be further expanded to

Var[Xw,v] =
∑

n∈N(v)

(fn + 1)2p2w,n

4
mλv,n(1− λv,n)−

∑∑
a,b∈N(v)

a̸=b

mλv,aλv,b
(fa + 1)(fb + 1)pw,apw,b

4
(10)

The derivation process is presented in the Appendix. Here,
λv,n measures the probability of selecting a post from a
neighbor n for user v. Since all the neighbours of v compose
posts that follow i.i.d Possion processes and it has been shown
in [26] that the sum of i.i.d Poisson distribution follows a
multinomial distribution, we have λv,n = λn∑

n′∈N(v) λn′
.

To calculate Var[Xw,v] according to Eqn. 10, we need to
traverse all the pairs of neighbours (a, b) for each user v.
Suppose the average node degree in a social network is z,
the computation complexity is O(z2|V |), which is very high
for dense social graphs. To reduce the computational cost, we
rewrite the term in Eqn. 10 as:

1

4

∑∑
a,b∈N(v)

a̸=b

mλv,aλv,b(fa + 1)(fb + 1)pw,apw,b

=
1

4

∑
a∈N(v)

mλv,a(fa + 1)pw,a

∑
b∈N(v)
a̸=b

λv,b(fb + 1)pw,b

=
1

4

∑
a∈N(v)

mλv,a(fa + 1)pw,a

(∑
b∈N(v)

λv,b(fb + 1)pw,b

)
− 1

4

∑
a∈N(v)

mλ2
v,a(fa + 1)2p2w,a

In this way, we can pre-compute
∑

b∈N(v) λv,b(fb+1)pw,b for
each user v and the complexity is reduced to O(z|V |).

B. Hybrid Retrieval Strategy

Var[Xw,v] only captures the variance of topic distributions
in the news feed. We need to further combine it with the
static personal interests to measure its impact in choosing
an appropriate retrieval strategy. By applying coefficient of
variation on the linear combination of static interests and
dynamic topic distributions in the news feed, we have

ρ(v) = max
w∈T

1−α
m

√
Var[Xw,v]

α · rel(u,w) + 1−α
m · E[Xw,v]

(11)

In addition, the ratio of the read frequency of user v to the
write frequency of v’s neighbors will also affect the retrieval
strategy selection and is ignored in the above model, which
only considers the variance of topic distributions for a sequence
of write operations. To bridge the gap, we extend ρ(v) by
taking the read frequency ηv of v into account.

ρ∗(v) =

∑
n∈N(v) λn

ηv
· ρ(v) (12)

Finally, we can use ρ∗(v) to determine the retrieval strategy
for user v. If ρ∗(v) is smaller than a pre-defined threshold
ρmax, we adopt the safe region strategy for user v. Otherwise
online retrieval is used when v logins/refreshes its personal
social page.



TABLE II: All parameter settings used in the experiments. The default
values are highlighted.

Datasets Twitter dataset News dataset
#Users 10, 20, 30, 40 (M) 0.2, 0.6, 1, 1.4 (M)
#Edges 0.7, 1.1, 1.2, 1.3 (B) 1.0, 1.9, 2.6, 3.1 (M)

AvgDegree 76.4, 56.8, 46.1, 38.9 5.2, 3.1, 2.6, 2.2
α 0.1, 0.3, 0.5, 0.7, 0.9
k 1, 2, 3, 4, 5

R/W 1.0, 2.0, 4.0, 8.0, 16.0
#Topics 5, 10, 15, 20, 25

VII. EXPERIMENTAL STUDY

In this section, we study the performance of the three
proposed methods on real social network datasets with billions
of edges. In the following experiments, we focus on evaluating
the efficiency of the proposed methods. The effectiveness
evaluation is beyond the scope of the paper because we simply
adopt the previous topical mining and relevance measurement
techniques which have already been shown to be effective.
In addition, the idea of considering newsfeed as a dynamic
context was also supported by a recent work from Twitter [2].

We use Online to denote the online retrieval method
presented in Section IV and use GSR and Hybrid to denote
the methods proposed in Sections V and VI respectively. All
the methods are implemented with C++ and run in memory
on a CentOS server (Intel i7-3820 3.6GHz CPU with 8 cores
and 60GB RAM).

Advertisement Datasets. We use Amazon products [27] and
AOL keyword queries5 as two representative ad repositories.
The Amazon dataset consists of 548, 552 products associated
with their metadata and review information; whereas in the
AOL dataset, there are over 7 million keyword queries. We
then apply existing topic modeling method [20] upon the
products and keyword queries, resulting in ads in the form
of probabilistic topic distributions with fixed number of di-
mensions.

Social Network Datasets. We use two real datasets, Twitter
and News, from SNAP6 to evaluate the performance in differ-
ent structures of social networks. The Twitter dataset contains
41.6 million users and 476 million tweets; the News dataset
contains 1.42 million websites extracted from a collection of
96 million online articles. For the News dataset, the vertex in
the graph denotes a website whereas the edge means that there
is a link from one website to another. To test the scalability
with increasing graph sizes, we sampled 10M, 20M, 30M, 40M
nodes for the Twitter dataset and 0.2M, 0.6M, 1M, 1.4M nodes
for the News dataset.

To simulate a social network with high-speed news feeding,
we extract 1 million articles or tweets to generate a sequence of
write operations and the order is determined by the timestamp
associated with each article or tweet. Each write operation
consists of an article or tweet and the associated website
or user in the network. The remaining items are used to
model static personal interests. We simply apply LDA to the
remaining articles or tweets of each user to construct the
topic distributions. The input stream to the system consists a
sequence of read and write operations. The user who triggers

5http://www.gregsadetsky.com/aol-data/
6http://snap.stanford.edu/
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the read operation can be any node in the network. When a
write operation arrives, we simply analyze the post and store
it in the database. When a read operation arrives, we call
the proposed methods to return top-k ads. Since our target
is to guarantee the real-time delivery of relevant ads, we are
interested to measure the average elapsed time in retrieving the
top-k ads for each read operation in the following experiments.

Parameters & Settings. As shown in Table II, we evaluate the
scalability w.r.t. increasing α (the weight of static interests in
the ranking function), k (the number of ads to be embedded
in the news feed) and |V | (the number of users in a social
network). In addition, we simulate the user activities in social
networks with different read/write ratio R/W . The read oper-
ation refers to a user login or refreshing the news feed. The
write operation means a user composes, likes or shares a post.
We will see that the proposed methods have different biases
on this parameter. We also evaluate the number of topics from
5 to 25. For the number of posts in one’s news feed window,
we use the default value (m = 20) in Twitter and when a user
logins, 20 latest articles/tweets are returned.

A. Tuning ρ

We first investigate the effect of threshold parameter ρ
(Equation 11) that indicates how dynamic a user’s news feed
is in the Hybrid model. If ρ is large, the news feed of most
users are considered as non-dynamic and they will adopt the
GSR method for ad recommendation. There may be frequent
update of their safe regions, incurring high CPU cost. If ρ is
small, most users will adopt the Online method to retrieve the
top-k ads when a read operation is triggered. CPU resources
may be wasted if the read frequency is high but the top-k ads
update infrequently. Therefore there exists a sweet spot for ρ.
As shown in Fig. 6, we select 0.06, 0.08, 0.03 and 0.02 for
News-AOL, News-Amazon, Twitter-AOL and Twitter-Amazon
datasets respectively.
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B. Varying α

In our ranking function for top-k ads retrieval, we consider
the relevance to the static user interests and dynamic news
feed that are combined linearly by the parameter α. In the
first evaluation of the three proposed methods, we examine
the performance w.r.t. varying α. As shown in Fig. 7, the
performance of the Online method is invariant under different
α for all datasets. This is because the Online method always
recomputes the top-k ads whenever there is a read operation.
The computation cost remains the same when α varies.

The GSR method shows superior performance over Online
for large α. When α increases, the relevance score between an
ad and a user is more likely to be dominated by the static user
interests and less affected by the dynamic update in the news
feed. Hence, the constructed safe region can last longer before
its next re-construction. However, when α is very small, the
GSR method becomes very sensitive to the news feed update
and its performance can degrade to a point that it becomes
inferior to the Online method. The arrival of new posts in the
news feed incurs frequent re-construction of safe region which
is more expensive than retrieving top-k ads in the Online
method.

The Hybrid method combines the advantages of the On-
line and the GSR methods and shows superior performance. It
can outperform GSR by up to 30x speedups and outperform
Online by up to 11x speedups in our experiments. This is
because the hybrid model can automatically select a retrieval
strategy for each user based on our proposed cost model to
optimize the performance. It can avoid repetitive retrieval of
the same set of ads as in the Online method. It can also avoid
frequent safe region re-construction as in the GSR method
when the news feed updates at a high speed. Hence, we can see
that its performance is not as sensitive to α as the GSR method.
For different values of α, it can select a suitable retrieval
strategy for each user. The experimental results verified the
effectiveness of our proposed hybrid model.
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We can also see that the ad database derived from the
Amazon dataset results in slower performance than that from
the AOL dataset. This is because the textual information in
the Amazon dataset is more abundant. It contains product
descriptions of books, music and movies while the ads in the
AOL dataset are simply keyword search queries. The vectors
of topic distributions in the AOL dataset is much more sparse
with the values of many columns being or close to 0. It leads
to an early termination of the TA algorithm to retrieve top-k
ads, which is a component in all the three proposed methods.

Finally, as shown in the figure, when α varies, most users
can adapt themselves by selecting a proper retrieval strategy.
Another interesting observation is that the performance of
Hybrid is more stable in the Twitter dataset than in the News
dataset. This is because the posts in the News dataset have
longer text and cover more topics. After aggregating the topic
distributions in the window, the variation in the news feed
would be more dramatical.

C. Increasing k

When we increase the number of recommended ads, i.e.
k, it takes longer to perform recommendation for all three
methods as shown in Fig. 8. First, all the methods need to
retrieve top-k relevant ads using the TA algorithm. It is obvious
that when k increases, the k-th score becomes larger and it
needs to scan more items in the sorted lists until the k-th
score is smaller than the upper bound of the unvisited items.
Second, the effectiveness of a safe region is affected by k.
Based on our observations on the experiments, when k is large,
the k-th and (k+1)-th item become less distinguishable which
makes it more difficult to construct an effective safe region.
Nevertheless, Hybrid still significantly outperforms the other
two methods and its speedup is 10x in the Twitter-Amazon
dataset.
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D. Vary Read/Write Ratio

In this experiment, we examine the performance and ro-
bustness in a dynamic streaming environment with varying
read/write ratio. In this experimental setup, we divide the 1
million sampled write operations into 10 blocks, each with
100K write operations. For each block, we manually control
the read/write ratio inside. In particular, we first increase the
ratio of each block from 1, 2, 4, 8 to 16 and then decrease
afterwards. It means in the first block, we have 100K read
operations and 100K write operations. When the ratio is 16,
there are 1600K read operations with 100K write operations
in one block.

We report the total running time of handling the read
operations in Fig. 9. The running time for the write operations
is the same for all the three methods and thus ignored. Since
Online always retrieve the top-k results on the fly for a read
operation, its running time drastically increases when there
are more read operations. It is interesting to observe that
GSR significantly outperforms Online when the read/write
ratio is very high, say 8 or 16 in the figure. This is because
the context for the next read operation varies little given
such a high read/write ratio. The constructed safe region can
support more read operations before its next re-construction.
However, the total processing time of GSR still grows with the
read frequency. When more read operations are triggered by
randomly picked users, it becomes more likely to detect a user
whose safe region requires re-construction. The throughput of
Hybrid is higher than both Online and GSR and demonstrates
higher adaptivity to the dynamic workloads. It periodically
updates ρ∗(v) for each user v to track the dynamism of v’s
news feed and apply a suitable retrieval strategy. Thus, we
have seen that the performance of Hybrid is robust against
streaming blocks with different read/write ratios.
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E. Scalability

In the final set of experiments, we evaluate the scalability of
the three proposed methods w.r.t increasing number of topics
and graph size.

We increase the number of topics from 5 to 25 and the
performance of all methods w.r.t increasing number of topics
is presented in Fig. 10. It shows that all methods run slower
when there are more topics. Higher dimensions in the topic
distribution vectors will result in more computation cost in the
TA algorithm as well as less effectiveness in the constructed
safe regions. Nevertheless, Hybrid remains superior over the
other two methods in all experiments and it shows that Hybrid
is more capable to handle larger number of topics.

Lastly, we show the experimental results when varying
graph sizes. Not surprisingly, Online is not affected by larger
graphs since the retrieval of ads is independent of graph size.
Surprisingly, we found that GSR and Hybrid show better
performance when the graph size becomes larger. We interpret
the reason as the following: although the social graph is larger,
the average degree in a larger graph is actually smaller in our
experiments as the graph statistics suggest in Table II. Smaller
average degrees mean the news feeds are less dynamic since
only the posts written by a neighbour on the social graph will
appear in one’s news feed. As safe region based methods are
highly dependent on the dynamism of news feeds, it is intuitive
to understand that they are more efficient with larger number
of nodes in the social graph.

VIII. CONCLUSION

In this work, we studied the context-aware advertisement
recommendation problem for high speed social news feeding.
We first formulated a general ranking function of ads against
each user in the social network by combing the his/her interests
and dynamic contents in the news feed. The Online method
was first proposed to retrieve a user’s news feed and re-
compute the recommended ads based on TA algorithm when
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there is a read operation triggered. Then the GSR method
is developed, which maintains a safe region and only re-
computes the recommended ads whenever the safe region is
found invalid against updated news feed. Subsequently, we
developed the Hybrid method to analyze users in terms of
the dynamism of their news feed and determine a suitable
retrieval strategy so as to speedup the recommendation process.
Extensive experiments on real world social networks and ad
datasets have verified the efficiency and robustness of the
hybrid model.
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X. APPENDIX

Derivation of Eqn. 9: Var[Xw,v] is defined in Eqn. 9 as:

Var[Xw,v] = Var[
∑

n∈N(v)

∑
1≤i≤Mv,n

Dw,n(Fn)]

By the definition of variance, we obtain the following expan-
sion of Var[Xw,v]:

Var[Xw,v] =
∑

n∈N(v)

Var[
∑

1≤i≤Mv,n

Dw,n(Fn)] (13)

+
∑∑
a,b∈N(v)

a̸=b

Cov[
∑

1≤i≤Mv,a

Dw,a(Fa),
∑

1≤i≤Mv,b

Dw,b(Fb)] (14)



We compute Eqn. 13 and 14 separately. For a user v and a
topic w, Var[

∑
1≤i≤Mv,n

Dw,n(Fn)] can be expressed as:

Var[
∑

1≤i≤Mv,n

Dw,n(Fn)]

= E[
(∑

1≤i≤Mv,n

Dw,n(Fn)
)2
]− E[

∑
1≤i≤Mv,n

Dw,n(Fn)]
2

= E[E[
(∑

1≤i≤Mv,n

Dw,n(Fn)
)2
]|Mv,n]− E[E[

∑
1≤i≤Mv,n

Dw,n(Fn)]|Mv,n]
2

Since we know that both Mv,n is independent of Dw,n(Fn)
and each Dw,n(Fn) are independent of each other:

E[E[
(∑

1≤i≤Mv,n

Dw,n(Fn)
)2
]|Mv,n]

= E[M2
v,nE[Dw,n(Fn)]

2|Mv,n]

= E[Dw,n(Fn)]
2E[M2

v,n|Mv,n] = E[Dw,n(Fn)]
2E[M2

v,n]

and in a similar way:

E[E[
∑

1≤i≤Mv,n

Dw,n(Fn)]|Mv,n]
2 = E[Dw,n(Fn)]

2E[Mv,n]
2 (15)

now we have:

Var[
∑

1≤i≤Mv,n

Dw,n(Fn)] = E[Dw,n(Fn)]
2Var[Mv,n]

Since Var[Mv,n] = mλv,n(1− λv,n), we only need to derive
the unknown term E[Dw,n(Fn)].

E[Dw,n(Fn)] = E[E[Dw,n(Fn)]|Fn] =
(fn + 1)pw,n

2

Then, for any n and w, we are able to evaluate:

Var[
∑

1≤i≤Mv,n

Dw,n(Fn)] =
(fn + 1)2p2w,n

4
mλv,n(1−λv,n) (16)

Next we derive Cov[
∑

1≤i≤Mv,a
Dw,a(Fa),

∑
1≤i≤Mv,b

Dw,b(Fb)]

for any a, b ∈ N(v) and a ̸= b. Let A =
∑

1≤i≤Mv,a
Dw,a(Fa)

and B =
∑

1≤i≤Mv,b
Dw,b(Fb). It follows that:

Cov[
∑

1≤i≤Mv,a

Dw,a(Fa),
∑

1≤i≤Mv,b

Dw,b(Fb)] = E[AB]−E[A]E[B]

From Eqn. 15, we can get E[A] = E[Dw,a(Fa)]E[Mv,a] and
E[A] = E[Dw,b(Fb)]E[Mv,b]. The only left part is E[AB]
which can be derived as the follows:

E[AB] = E[AB|Mv,a,Mv,b]

= E[
∑

1≤i≤Mv,a

Dw,a(Fa) ·
∑

1≤i≤Mv,b

Dw,b(Fb)|Mv,a,Mv,b]

= E[Dw,a(Fa)]E[Dw,b(Fb)]E[Mv,aMv,b]

Then it is natural to have:

Cov[A,B] = E[Dw,a(Fa)]E[Dw,b(Fb)]Cov[Mv,a,Mv,b]

= − (fa + 1)(fb + 1)pw,apw,b

4
mλv,aλv,b (17)

By combining the above results from Eqn. 16 and 17, we can
derive Var[Xw,v].

0

Fig. 12: The location of xmax for an ad against a safe region.

Proof of Theorem 2: For the ease of presentation, we prove
Theorem 2 in 3D space and the proof can be generalized to
any finite dimensional space. Given the spherical safe region B
and the center of B, i.e. xc, as shown in Figure 12, we draw a
plane P which is normal to xc and passes through x∗

max (Here
x∗
max is used as the contact point between the sphere and the

vector x∗
max). a is the point where the ad vector intersects with

P and R is the intersecting circle region between B and P .
It is easy to see that the line from a to x∗

max passes through
the center of the intersecting circle plane between B and P ,
i.e. x′

c. This means any point q on the boundary of R will
have shorter distance to a than that of x∗

max. Moreover, since
x∗
max has a negative coordinate, we can find a line segment cd,

which is the intersection between P and the boundary region
Si, that separates a and x∗

max on both sides of cd. For any
point q on the boundary of R, α is the angle between a, xc

and q, xc. Then the distance from a to q can be expressed as:

ξ(a, q) = ξ2(a, x′
c) + ξ2(q, x′

c)− 2ξ(a, x′
c)ξ(q, x

′
c)cosα

where ξ(., .) denotes the distance between two points. There-
fore ξ(a, q) is a continuous unimodal function w.r.t α ∈
[0, 2π). This means max{ξ(a, c), ξ(a, d)} is larger than any
point q which is on the boundary of R and lies on the
same side with a w.r.t line cd. This in term means θ(q, a) <
max{θ(a, c), θ(a, d)} because all points on R have the same
distance to the origin and θ(q, a) is proportional to ξ(q, a).

With the above proof, we have shown that,
max{θ(a, c), θ(a, d)} is the maximum possible angle
within the region R. However we have not shown for all
points on B that such condition holds. Note that since R
contains the point x∗

max which is a contact point between B
and B’s minimum bounding convex cone. Then all vectors
from the origin to any points on B will pass through R. Thus
we can conclude that max{θ(a, c), θ(a, d)} is the maximum
possible angle among all points on B and prove Theorem 2.


